Total No. of Questions-8]

B.A./B.Sc. VI Semester Examination NON - CBCS - VIs(P)

Mathematics Course No.: MA-601

Time Allowed: 3 Hours

Maximum Marks: 80

Note: Attempt any four questions from the given questions. Each question carries equal marks.

Q 1. *i*) Define vector space. Show that \mathbb{C} is a vector space over \mathbb{R} .

ii) Prove that the union of two subspaces of a vector space V over a field F is a subspace if and only if one of them is a subset of the other.

Q 2. i) Let V be a vector space over a field F. If S and T are subsets of V, prove that

 $L(S \cup T) = L(S) + L(T).$

ii) Let V be vector space of real functions over \mathbb{R} , show that the set of functions $S = \{e^{3x}, x^3, x^2\}$ is L.I.

Q 3. *i*) Define basis of a vector space. Give an example of the following:

(a) A finite dimensional vector space.

(b) An infinite dimensional vector space.

ii) Prove that any two bases of a finite dimensional vector space have same number of elements.

Q 4. *i)* Define dual space. Let V be a finite dimensional vector space over a field F, dim.V = n and v is a non-zero vector, then show that there exists $f \in V^*$ such that $f(v) \neq 0$. ii) Show that the vectors (1, 1, 1), (1, 0, 1) and (1, -1, -1) of \mathbb{R}^3 form a basis of \mathbb{R}^3 over \mathbb{R} .

Q 5. *i)* If V and W are two vector spaces over the same field F. Show that $T: V \to W$ is a linear transformation if and only if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in V$ and $\alpha, \beta \in F$.

ii) Show that $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + y, x - y, y) is a linear transformation. Also find its kernel.

Q 6. i) Find the matrix representation of $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ defined as

T(x, y) = (3x - 4y, x + 5y)

with respect to the basis $B = \{(1, 3), (3, 4)\}.$

ii) Show that countable union of countable sets is countable. Hence show that $\mathbb{N} \times \mathbb{N}$ is countable.

Q 7. *i*) Define closed set of \mathbb{R} . Show that the following sets are closed:

- (a) \mathbb{N}
- $(b) \mathbb{Z}$
- $(c) \mathbb{R}$

ii) Define limit point of a set. Show that 0 is the only limit point of the set $\{\frac{1}{n} : n \in \mathbb{N}\}$.

Q 8. *i)* Show that every continuous function $f: [a, b] \to \mathbb{R}$ is uniformly continuous.

ii) Prove that every monotonically increasing sequence $\{a_n\}$ converges if and only if it is bounded above.